Thalamic POm projections to the dorsolateral striatum of rats: potential pathway for mediating stimulus-response associations for sensorimotor habits.

نویسندگان

  • Jared B Smith
  • Todd M Mowery
  • Kevin D Alloway
چکیده

The dorsolateral part of the striatum (DLS) represents the initial stage for processing sensorimotor information in the basal ganglia. Although the DLS receives much of its input from the primary somatosensory (SI) cortex, peripheral somesthetic stimulation activates the DLS at latencies that are shorter than the response latencies recorded in the SI cortex. To identify the subcortical regions that transmit somesthetic information directly to the DLS, we deposited small quantities of retrograde tracers at DLS sites that displayed consistent time-locked responses to controlled whisker stimulation. The neurons that were retrogradely labeled by these injections were located mainly in the sensorimotor cortex and, to a lesser degree, in the amygdala and thalamus. Quantitative analysis of neuronal labeling in the thalamus indicated that the strongest thalamic input to the whisker-sensitive part of the DLS originates from the medial posterior nucleus (POm), a somesthetic-related region that receives inputs from the spinal trigeminal nucleus. Anterograde tracer injections in POm confirmed that this thalamic region projects to the DLS neuropil. In subsequent experiments, simultaneous recordings from POm and the DLS during whisker stimulation showed that POm consistently responds before the DLS. These results suggest that POm could transmit somesthetic information to the DLS, and this modality-specific thalamostriatal pathway may cooperate with the thalamostriatal projections that originate from the intralaminar nuclei.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Thalamostriatal projections from the medial posterior and parafascicular nuclei have distinct topographic and physiologic properties.

The dorsolateral striatum (DLS) is critical for executing sensorimotor behaviors that depend on stimulus-response (S-R) associations. In rats, the DLS receives it densest inputs from primary somatosensory (SI) cortex, but it also receives substantial input from the thalamus. Much of rat DLS is devoted to processing whisker-related information, and thalamic projections to these whisker-responsiv...

متن کامل

Sensory Processing in the Dorsolateral Striatum: The Contribution of Thalamostriatal Pathways

The dorsal striatum has two functionally-defined subdivisions: a dorsomedial striatum (DMS) region involved in mediating goal-directed behaviors that require conscious effort, and a dorsolateral striatum (DLS) region involved in the execution of habitual behaviors in a familiar sensory context. Consistent with its presumed role in forming stimulus-response (S-R) associations, neurons in DLS rec...

متن کامل

Repeated whisker stimulation evokes invariant neuronal responses in the dorsolateral striatum of anesthetized rats: a potential correlate of sensorimotor habits.

The dorsolateral striatum (DLS) receives extensive projections from primary somatosensory cortex (SI), but very few studies have used somesthetic stimulation to characterize the sensory coding properties of DLS neurons. In this study, we used computer-controlled whisker deflections to characterize the extracellular responses of DLS neurons in rats lightly anesthetized with isoflurane. When mult...

متن کامل

Neural Correlates of Stimulus–Response and Response–Outcome Associations in Dorsolateral Versus Dorsomedial Striatum

Considerable evidence suggests that there is functional heterogeneity in the control of behavior by the dorsal striatum. Dorsomedial striatum may support goal-directed behavior by representing associations between responses and outcomes (R-O associations). The dorsolateral striatum, in contrast, may support motor habits by encoding associations between stimuli and responses (S-R associations). ...

متن کامل

Dissociable effects of frontal cortical lesions on measures of visuospatial attention and spatial working memory in the rat.

Frontal cortex controls voluntary movement through projections to striatum that continue as parallel pallido-thalamic loops. In previous studies we found evidence of a double dissociation in rat striatum between visuospatial response time (RT) and radial maze delayed non-matching (DNM) tasks. Here we compare the effects of frontal cortical lesions on these tasks. We found that lesions involving...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of neurophysiology

دوره 108 1  شماره 

صفحات  -

تاریخ انتشار 2012